首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4371篇
  免费   229篇
  国内免费   326篇
  2023年   60篇
  2022年   74篇
  2021年   103篇
  2020年   103篇
  2019年   116篇
  2018年   112篇
  2017年   115篇
  2016年   126篇
  2015年   115篇
  2014年   168篇
  2013年   346篇
  2012年   145篇
  2011年   147篇
  2010年   112篇
  2009年   194篇
  2008年   253篇
  2007年   251篇
  2006年   184篇
  2005年   188篇
  2004年   179篇
  2003年   160篇
  2002年   134篇
  2001年   113篇
  2000年   72篇
  1999年   82篇
  1998年   86篇
  1997年   74篇
  1996年   69篇
  1995年   80篇
  1994年   66篇
  1993年   66篇
  1992年   62篇
  1991年   51篇
  1990年   43篇
  1989年   60篇
  1988年   60篇
  1987年   47篇
  1986年   41篇
  1985年   66篇
  1984年   80篇
  1983年   41篇
  1982年   56篇
  1981年   38篇
  1980年   39篇
  1979年   38篇
  1978年   31篇
  1977年   22篇
  1976年   17篇
  1974年   13篇
  1973年   12篇
排序方式: 共有4926条查询结果,搜索用时 53 毫秒
971.
Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione-S-transferase (GST), as well as total glutathione (tGSH) concentration were analyzed in the hemolymph and fat body of the European corn borer Ostrinia nubilalis Hubn. and the Mediterranean borer Sesamia cretica Led. (Lepidoptera, Noctuidae). Controls were maintained at 8°C while experimental groups of larvae were exposed to –3°C for ten days and then to –12°C for 23 days (only for Ostrinia). Cold exposure significantly increased fat body SOD, GR, and GST activities of Ostrinia larvae. Only GST activity and tGSH levels increased significantly in Ostrinia larval hemolymph on cold exposure. In Sesamia larvae after cold exposure, hemolymph CAT activity was significantly lower, while fat body tGSH increased. The antioxidant defense systems of these two species show differences, probably influenced by their respective cold-hardiness metabolism. According to its antioxidant profile, the response of Ostrinia suggests a significant physiological alteration in its metabolism during cold exposure, indicating a compensatory mechanism. By contrast this is not evident in Sesamia.Arch. Insect Biochem. Physiol. 36:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
972.
Solution scattering curves evaluated from the crystal structures of the T and R states of the allosteric enzyme aspartate transcarbamylase from Escherichia coli were compared with the experimental x-ray scattering patterns. Whereas the scattering from the crystal structure of the T state agrees with the experiment, large deviations reflecting a significant difference between the quaternary structures in the crystal and in solution are observed for the R state. The experimental curve of the R state was fitted by rigid body movements of the subunits in the crystal R structure which displace the latter further away from the T structure along the reaction coordinates of the T→R transition observed in the crystals. Taking the crystal R structure as a reference, it was found that in solution the distance between the catalytic trimers along the threefold axis is 0.34 nm larger and the trimers are rotated by 11° in opposite directions around the same axis; each of the three regulatory dimers is rotated by 9° around the corresponding twofold axis and displaced by 0.14 nm away from the molecular center along this axis. Proteins 27:110–117 © 1997 Wiley-Liss, Inc.  相似文献   
973.
Flow injection procedures with immobilized enzyme mini-columns are described for the determination of glycerol-3-phosphate, and glycerophosphorylcholine with chemiluminescent detection. The hydrogen peroxide produced on-line is coupled with a luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) peroxidation chemiluminescent system. The detection limits for glycerol-3-phosphate and glycerophosphorylcholine are 5×10−7 M and 1×10−6 M respectively with r.s.d. <2%. The sample throughput is 40/h. The immobilized enzyme columns did not show any deterioration in activity after usage for 3 months. © 1997 John Wiley & Sons, Ltd.  相似文献   
974.
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) that converts pyruvate and coenzyme A into acetyl-CoA and formate in a reaction that is crucial to the primary metabolism of many anaerobic bacteria. The glycyl radical cofactor, which is posttranslationally installed by a radical S-adenosyl-L-methionine (SAM) activase, is a simple and effective catalyst, but is also susceptible to oxidative damage in microaerobic environments. Such damage occurs at the glycyl radical cofactor, resulting in cleaved PFL (cPFL). Bacteria have evolved a spare part protein termed YfiD that can be used to repair cPFL. Previously, we obtained a structure of YfiD by NMR spectroscopy and found that the N-terminus of YfiD was disordered and that the C-terminus of YfiD duplicates the structure of the C-terminus of PFL, including a β-strand that is not removed by the oxygen-induced cleavage. We also showed that cPFL is highly susceptible to proteolysis, suggesting that YfiD rescue of cPFL competes with protein degradation. Here, we probe the mechanism by which YfiD can bind and restore activity to cPFL through enzymatic and spectroscopic studies. Our data show that the disordered N-terminal region of YfiD is important for YfiD glycyl radical installation but not for catalysis, and that the duplicate β-strand does not need to be cleaved from cPFL for YfiD to bind. In fact, truncation of this PFL region prevents YfiD rescue. Collectively our data suggest the molecular mechanisms by which YfiD activation is precluded both when PFL is not damaged and when it is highly damaged.  相似文献   
975.
香菇单核体菌株在传统PDA培养基上生长时具有生长缓慢、容易老化等问题,本研究以1株香菇双核体Y0040以及相对应的2株单核体(Y0040-1和Y0040-3)为研究材料,通过添加不同比例木屑粉的PDA培养基筛选适合香菇单核体生长的配比,结果表明添加木屑能够显著促进单核体菌丝的生长,最适添加比例为2%。将Y0040-1和Y0040-3在PDA和2%木屑PDA上培养后进行转录组表达谱差异分析,结果显示Y0040-1和Y0040-3两个单核菌株在木屑-PDA培养基上生长有1066个共有的差异表达基因,进一步对其注释发现,这些差异基因在细胞结构合成以及碳水化合物代谢等途径上得到富集。同时1066个共有的差异基因中有113个共上调,富集于氧化还原反应,267个共下调主要富集于蛋白质折叠和去折叠等途径。进一步对1066个差异基因进行CAZYmes家族和木质纤维素酶分析,发现有36个家族基因差异表达,包括了4个多铜氧化酶、6个β-葡萄糖苷酶和2个内β-1,4-葡聚糖酶,其中多铜氧化酶基因表达在木屑培养基上都显著上升。木质纤维素降解酶基于氧化还原反应等将木质素降解为菌丝体生长发育所必需的小分子单糖,可...  相似文献   
976.
沟眶象Eucryptorrhynchus scrobiculatus和臭椿沟眶象E. brandti是取食单一寄主臭椿Ailanthus altissima不同部位的钻蛀性害虫。二者成虫羽化后交配之前均需补充营养,且取食臭椿不同部位(叶柄、1年生枝、2~3年生枝、主干)对其雌成虫生殖系统发育的影响差异显著。就臭椿沟眶象雌成虫而言,只有取食主干才能够产卵;而对沟眶象雌成虫来说,则只有取食2~3年生枝的无法产卵。本研究使用臭椿的4种不同部位(叶柄、1年生枝、2~3年生枝、主干)饲喂这两种象甲成虫,利用ELISA试剂盒测定两种象甲的3种解毒酶(谷胱甘肽转移酶、羧酸酯酶和细胞色素P450)和3种消化酶(胰蛋白酶、淀粉酶、脂肪酶)的酶活性。结果表明,两种象甲中后肠的6种酶活性在取食不同寄主部位后发生显著性差异。其中,臭椿沟眶象雌成虫取食主干显著降低其中后肠的CarE酶活性,沟眶象雌成虫取食2~3年生枝能显著提高中后肠的CarE酶活性,同时降低中后肠AMY酶活性。本文明确了寄主植物不同部位对这两种象甲成虫中后肠消化解毒酶活性的影响,分析了两种象甲初羽化雌成虫补充营养造成生殖系统发育差异的原因,对后续这两种象甲消化解毒酶相关研究有一定参考价值。  相似文献   
977.
In recent years, many research on the quantity of lignocellulosic waste have been developed. The production, partial purification, and characterisation of ligninolytic enzymes from various fungi are described in this work. On the 21st day of incubation in Potato Dextrose (PD) broth, Hypsizygus ulmarius developed the most laccase (14.83 × 10−6 IU/ml) and manganese peroxidase (24.11 × 10−6 IU/ml), while Pleurotus florida produced the most lignin peroxidase (19.56 × −6 IU/ml). Laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), all generated by selected basidiomycetes mushroom fungi, were largely isolated using ammonium sulphate precipitation followed by dialysis. Laccase, lignin peroxidase, and manganese peroxidase purification findings indicated 1.83, 2.13, and 1.77 fold purity enhancements, respectively. Specific activity of purified laccase enzyme preparations ranged from 305.80 to 376.85 IU/mg, purified lignin peroxidase from 258.51 to 336.95 IU/mg, and purified manganese peroxidase from 253.45 to 529.34 IU/mg. H. ulmarius laccase (376.85 IU/mg) with 1.83 fold purification had the highest specific activity of all the ligninolytic enzymes studied, followed by 2.13 fold purification in lignin peroxidase (350.57 IU/mg) and manganese peroxidase (529.34 IU/mg) with 1.77-fold purification. Three notable bands with molecular weights ranging from 43 to 68 kDa and a single prominent band with a molecular weight of 97.4 kDa were identified on a Native PAGE gel from mycelial proteins of selected mushroom fungus. The SDS PAGE profiles of the mycelial proteins from the selected mushroom fungus were similar to the native PAGE. All three partially purified ligninolytic isozymes display three bands in native gel electrophoresis, with only one prominent band in enzyme activity staining. The 43 kDa, 55 kDa, and 68 kDa protein bands correspond to laccase, lignin peroxidase, and manganese peroxidase, respectively.  相似文献   
978.
Zinc plays essential roles in the early secretory pathway for a number of secretory, membrane-bound, and endosome/lysosome-resident enzymes. It enables the enzymes to fold properly and become functional, by binding as a structural or catalytic component. Moreover, zinc secreted from the secretory vesicles/granules into the extracellular space has a pivotal role as a signaling molecule for various physiological functions. Zinc transporters of the Slc30a/ZnT and Slc39a/Zip families play crucial roles in these functions, mediating zinc influx to and efflux from the lumen of the secretory pathway, constitutively or in a cell-specific manner. This paper reviews current knowledge of the ways these two zinc transporters perform these tasks by manipulating zinc homeostasis in the secretory pathway. Recent questions concerning zinc released into the cytoplasm from the secretory pathway, which then functions as an intracellular signaling molecule, are also briefly reviewed, emphasizing zinc transporter functions.  相似文献   
979.
980.
7‐Carboxy‐7‐deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6‐carboxy‐5,6,7,8‐tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7‐deazaguanine natural products. QueE is a member of the S‐adenosyl‐L‐methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3CX?C motif, to bind a [4Fe‐4S] cluster, and a partial (β/α)6 TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster‐binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE from Burkholderia multivorans called into question whether a re‐haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE from Bacillus subtilis revealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme from Escherichia coli, which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin. Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7‐carboxy‐7‐deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号